Post by WeAreAllOne on Nov 10, 2018 10:30:49 GMT -8
Stop Drinking Fluoride
The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure.
There is a big difference between the Sodium Fluoride (sodium fluoride NaF and fluorosilicic acid H2SiF6) that is added to our water, and naturally occurring fluorite mineral (calcium fluoride CaF2). The practice of adding sodium fluoride to the water, allegedly came from Nazi work camps, where it was used to break prisoners will and keep in a foggy mental state... showed up in Grand Rapids MI, in 1945.... right around the time Operation Paper Clip was snagging Nazi scientists and SS commanders like hot cakes.
There are a LOT more studies and papers, linking sodium fluoride to cancer, disease, and mental problems... but I'll just leave this one, as it's the most legit I can find, and very detailed. If you can't google a few words, or check out the sources in the paper, that's on you!
www.ncbi.nlm.nih.gov/pmc/articles/PMC3956646/
^ Here is the article in text, pasted with key paragraphs and points below.
Water Fluoridation: A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention
Abstract
Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed.
Adverse Impacts of Fluoride Ingestion on Human Health
The classification of fluoride as a pollutant rather than as a nutrient or medicine is a useful starting point for analysing the adverse effect of fluoride. No fluoride deficiency disease has ever been documented for humans. Indeed, the basis for setting an "adequate intake" of fluoride rests on the alleged ability of ingested fluoride to prevent tooth decay. However, since it is now known that the effect of fluoride is topical, the notion of an “adequate daily intake” is flawed. One of the key concerns about water fluoridation is the inability to control an individual's dose of ingested fluoride which brings into question the concept of the “optimal dose.” Since the 1980s numerous studies have identified that adults and children are exceeding these agreed limits, contributing to a rapid rise in dental fluorosis—the first sign of fluoride toxicity [35–37]. In 1991, the Centers for Disease Control (CDC) in the USA measured fluoride levels and found that where water is fluoridated between 0.7 and 1.2 ppm overall fluoride, total fluoride intake for adults was between 1.58 and 6.6 mg per day while for children it was between 0.9 and 3.6 mg per day and that there was at least a sixfold variation just from water consumption alone [38]. In their recent review of water fluoridation, the EU (European Union) Scientific Committee on Health and Environmental Risks highlight that young children are likely to exceed the upper tolerable limits for fluoride consumption in areas with water fluoridation greater than 0.8 ppm and using fluoride toothpaste, although the estimates of ingestion are probably underestimated as they are based on ingestion from food and beverages in nonfluoridated areas [30]. Warren et al. have highlighted the complexity of quantifying fluoride intake in areas where there is widespread water fluoridation and increased availability of fluoride-containing products. They argue that “… it is doubtful that parents or clinicians could adequately track children's fluoride intake and compare it with the recommended level, rendering the concept of an “optimal” or target intake relatively moot” [26, page 114]. Their conclusion supports earlier research that suggested that the term optimal fluoride intake should be dropped from common usage [39]. As Ismail and Hasson (2008) have argued “We believe that dentists should dismiss the misconception that there is a balance between dental caries and fluorosis, because patients can accrue the benefits of topical fluorides without developing fluorosis and without systemic intake” [40, page 1465].
The inability to control individual dose renders the notion of an “optimum concentration” obsolete. In the USA, a study in Iowa found that 90% of 3-month-olds consumed over their recommended upper limits, with some babies ingesting over 6 mg of fluoride daily, above what the Environmental Protection Agency and the WHO say is safe to avoid crippling skeletal fluorosis [41]. Most recently a study in the UK of fluoride levels found in tea concluded that “… fluoride concentrations can exceed the recommended DRI of 4 mg/day…, in certain tea commodities, under the minimal brewing time of 2 min…” [42, page 569]. This study used nonfluoridated water but supports earlier findings by Koblar et al. who report that the adequate intake of fluoride from a 70 kg adult consuming five cups of tea daily ranges from 25 to 210% depending upon tea brand and whether the water is fluoridated [43].
The main source of ingested fluoride to teeth is saliva, whose fluoride concentration is much lower than ingested fluoride. Furthermore, dental caries is essentially the outcome of bacterial infections modulated by physical, biological, environmental, behavioural, and lifestyle-related factors such as high numbers of cariogenic bacteria, inadequate salivary flow, high intake of fermentable carbohydrates, inadequate access to dental services, poor oral hygiene, inappropriate methods of feeding infants, malnutrition (especially calcium and magnesium deficiency), and poverty. Fluoride exposure has a complex relationship in relation to dental caries and may increase dental caries risk in malnourished children due to calcium depletion and enamel hypoplasia, while offering modest caries prevention in otherwise well-nourished children. It has been demonstrated that at low friction loads, enamel hydroxyapatite and fluoroapatite appear to wear in the same way. However, at high friction loads, fluoroapatite enamel flakes and wears catastrophically, leaving severely fractured enamel, whereas hydroxyapetite enamel does not as it is more adaptable to remodelling. This may be due to fluoride's disruption of cycles of demineralisation and mineralisation which take place throughout the lifecycle of teeth enamel [44–46]. The adverse impact of fluoride in producing brittle teeth has been recognised in laboratory animals since 1933, and fluoride-induced brittle teeth were demonstrated to be worse with industrial fluorides such as sodium fluoride compared with naturally occurring calcium fluoride [47].
Sauerheber has analysed the physiologic conditions (such as calcium and pH levels) and systemic effects of ingested fluoride as well as the efficacy of ingested artificially fluoridated water on dental caries prevention [48]. He highlights the important distinction that should be made between naturally occurring fluoride (calcium fluoride CaF2) found in water supplies and added fluoride compounds (sodium fluoride NaF and fluorosilicic acid H2SiF6). His analysis is based on a detailed review of the effect of fluorides on physiological functions and concludes that there are harmful effects from adding artificial fluoride compounds to water supplies. He observes that most analyses of fluoridation rarely focus on detailed physiological analysis but rely on observational epidemiological data to demonstrate effectiveness which are rarely sensitive enough or examine potential issues of harm. One key exception to this was the review by the National Research Council in the USA for the Environmental Protection Agency which took a weight of evidence approach to examining toxicological and physiological effects of fluoride on water [49]. This review identified a number of potential and established adverse effects including cognitive impairment, hypothyroidism, dental and skeletal fluorosis, enzyme and electrolyte derangement, and cancer [49].
In a meta-analysis of 27 mostly China-based studies on fluoride and neurotoxicity, researchers from Harvard School of Public Health and China Medical University in Shenyang found strong indications that fluoride may adversely affect cognitive development in children [50]. All but one study suggested that high fluoride content in water may negatively affect cognitive development. The average loss in intelligence quotient (IQ) was reported as a standardized weighted mean difference of 0.45, which would be approximately equivalent to seven IQ points for commonly used IQ scores with a standard deviation of 15 [50]. While fluoride's effect on IQ in this meta-analysis did not reach statistical significance, the combined effect at population level is remarkable. A particular concern of the NRC committee was the impact of ingested fluoride on the thyroid gland [49]. In a 2005 study, it was found that 47% of children living in a New Delhi neighbourhood with average water fluoride level of 4.37 ppm have evidence of clinical hypothyroidism attributable to fluoride. They found borderline low FT3 levels among all children exposed to fluoridated water [51]. The mechanisms through which fluoride exacerbates hypothyroidism include competitive binding with iodine, as well as synthesis obstruction of T3 and T4. These mechanisms explain the use of fluoride at doses above 5 mg/day in the treatment of hyperthyroidism [52, page 451]. Thus, fluoride-induced hypothyroidism is likely to be more common in iodine-deficient settings. Australian surveys indicate that the general Australian population is mildly deficient in iodine [53] Iodine-deficient children ingesting fluoridated water have been found to demonstrate intellectual deficits even at water fluoride levels of 0.9 ppm [54].
The most obvious and widespread impact of fluoride is dental fluorosis. In some cases—where fluoride levels are very high or where there is prolonged ingestion at 2 ppm or higher, cases of skeletal fluorosis have been reported. Skeletal fluorosis is a chronic metabolic bone disease caused by ingestion or inhalation of large amounts of fluoride. In regions with water fluoride concentrations over 2 ppm, or among workers constantly exposed to fluoride in aluminium or fertilizer industries, skeletal fluorosis is common (>20% prevalence) and manifested as joint pain in both upper and lower limbs, numbing and tingling of the extremities, back pains, and knock-knees. Vertebral osteosclerosis may result in spinal cord compression [55]. In addition, an increase in bone mass due to fluoride ingestion or treatment (for osteoporosis) does not translate into improved bone strength, and high doses of sodium fluoride for osteoporosis treatment may increase the risk of vertebral fractures [56]. Dental fluorosis mirrors skeletal fluorosis. Similar to counterintuitive histological changes in bone, the macroscopic appearance of increasing degrees of dental fluorosis was directly correlated to the degree of subsurface porosity [57]. Despite such histological changes suggesting that tooth decay prevalence may be higher among children with fluorosis, research findings have been mixed [58, 59]. There is no safe limit for fluoride ingestion in relation to dental fluorosis, but fluoridated levels exceeding 0.3 ppm have been associated with teeth mottling and discolouration [30]. Since the initially proposed optimum fluoride intake of 1 mg/day (from one litre of 1 ppm fluoridated water), new sources of fluoride have been introduced through dental care products, processed foods, and commercial beverages. These sources have increased average cumulative fluoride intake to more than 2 mg/day. With these higher levels of fluoride intake, dental fluorosis and other toxic effects noted above have also increased.
Currently, about 41% of children in the United States, where water has been fluoridated at an average level of 1 ppm, have varying degrees of dental fluorosis—levels of over 50% in some fluoridated areas [60]. The National Research Council's report on the health effects of ingested fluoride in the United States, found that “… the prevalence of dental fluorosis in optimally fluoridated areas (both natural and added) in recent years ranged from 8% to 51%, compared with 3% to 26% in non-fluoridated areas.” [49, page 37] This implies that while nonwater sources of fluoride are likely to be consumed at the same level in fluoridated and nonfluoridated areas, and while the use of dental supplements is higher in nonfluoridated areas, fluorosis is significantly higher in areas where water is fluoridated. While the only uncontroversial clinical complication of (severe) dental fluorosis is adverse psychological impact on well-being, self-esteem, and negative community perception of affected individuals' oral health [61], established clinical complications of skeletal fluorosis include arthritis, radiculomyelopathy, quadriparesis, and pathological bone fractures [62, 63].
Fluoride is a known enzyme disruptor. For example, fluoride's anticaries effect is derived in part from its ability to derange the enzymes of cariogenic bacteria [20, 21]. Fluoride can interfere by attaching itself to metal ions located at an enzyme's active site or by forming competing hydrogen bonds at the active site which is not exclusively just on the teeth [64]. There are 66 enzymes which are affected by fluoride ingestion, including P450 oxidases, as well the enzyme which facilitates the formation of flexible enamel [65]. A recent study of the effects of inorganic fluoride compounds on human cellular functions revealed that fluoride can interact with a wide range of enzyme-mediated cellular processes and genes modulated by fluoride including those related to the stress response, metabolic enzymes, the cell cycle, cell-cell communications, and signal transduction [66]. Due to high negativity of fluoride, it interacts actively with positively charged ions such as calcium and magnesium. In industrial settings, hydrofluoric acid poisoning is usually treated with intravenous calcium gluconate as such poisoning is associated with acute hypocalcaemia [67]. As with calcium, magnesium plays important roles in optimal bone and teeth formation. By competing with magnesium and calcium in teeth and bones, fluoride deranges the delicate bone formation and bone resorption processes. Such derangements, and consequent intensity of fluoride's adverse effects on bone and teeth, are amplified in malnutrition, calcium deficiency, and magnesium deficiency [68, 69]. Chronic fluoride ingestion is commonly associated with hyperkalaemia and consequent ventricular fibrillation [70].
There have also been a number of studies that link fluoride and cancer. More than 50 population-based studies which have examined the potential link between water fluoride levels and cancer have been reported in the medical literature. Most of these studies have not found a strong link between chronic fluoride ingestion and cancer. In a major review of the topic published in 1987, the International Agency for Research on Cancer labelled fluorides as “… non-classifiable as to their ability to cause cancer in humans” and that the studies reviewed “… have shown no consistent tendency for people living in areas with high concentrations of fluoride in the water to have higher cancer rates than those living in areas with low concentrations” [71]. However, they concluded that the evidence was inadequate to draw conclusions one way or another and that the evidence linking fluorides with cancer was deemed “inadequate” [71]. The York, NRC and SCHER reviews came to similar conclusions [28, 30, 49] However, population-based-studies strongly suggest that chronic fluoride ingestion is a possible cause of uterine cancer and bladder cancer; there may be a link with osteosarcoma—highlighted as an area where there is evidence of problems requiring further research [30, 72–74].
For further reading, please click here: www.ncbi.nlm.nih.gov/pmc/articles/PMC3956646/
Further points:
Some affordable removal systems:
purewaterfreedom.com/filter-fluoride
A change in the ideological approach to fluoride use for dental caries prevention is essential in the global public health community. An important change would be for the World Health Organization to repudiate its assertion that fluoride is an essential nutrient or trace element, or that artificial water fluoridation is a useful public health strategy. Resolution 4 of the 2007 World Health Assembly resolution 60.17 urges member states to “consider the development and implementation of fluoridation programmes” [90]. This statement is a reflection of current realities that artificial water fluoridation is not necessarily the most economical, effective, or affordable way to deliver fluoride to teeth in the 21st century [8, 9].
Additional links:
Reddit Discussion: www.reddit.com/r/conspiracy/comments/9uej2f/stop_drinking_fluoride/
www.ncbi.nlm.nih.gov/pmc/articles/PMC3956646/
www.lakestay.co.uk/fluoridefreecumbria/factfile.html
awakeningforums.com/thread/25/sodium-fluoride-added-water-toxic
awakeningforums.com/thread/120/decalcify-activate-pineal-gland
www.naturalnews.com/2017-08-03-fluoride-toxin.html
The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure.
Currently, only about 5% of the world's population—350 million people—(including 200 million Americans) consume artificially fluoridated water globally. Only eight countries—Malaysia, Australia, USA, New Zealand, Singapore, and Ireland, more than 50% of the water supply artificially fluoridate. Over the past two decades many communities in Canada, the USA, Australia, and New Zealand have stopped fluoridating their water supplies and in Israel the Minister for Health announced in April 2013 the end of mandatory water fluoridation.
The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect.
There is a big difference between the Sodium Fluoride (sodium fluoride NaF and fluorosilicic acid H2SiF6) that is added to our water, and naturally occurring fluorite mineral (calcium fluoride CaF2). The practice of adding sodium fluoride to the water, allegedly came from Nazi work camps, where it was used to break prisoners will and keep in a foggy mental state... showed up in Grand Rapids MI, in 1945.... right around the time Operation Paper Clip was snagging Nazi scientists and SS commanders like hot cakes.
There are a LOT more studies and papers, linking sodium fluoride to cancer, disease, and mental problems... but I'll just leave this one, as it's the most legit I can find, and very detailed. If you can't google a few words, or check out the sources in the paper, that's on you!
www.ncbi.nlm.nih.gov/pmc/articles/PMC3956646/
^ Here is the article in text, pasted with key paragraphs and points below.
Water Fluoridation: A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention
Abstract
Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed.
Adverse Impacts of Fluoride Ingestion on Human Health
The classification of fluoride as a pollutant rather than as a nutrient or medicine is a useful starting point for analysing the adverse effect of fluoride. No fluoride deficiency disease has ever been documented for humans. Indeed, the basis for setting an "adequate intake" of fluoride rests on the alleged ability of ingested fluoride to prevent tooth decay. However, since it is now known that the effect of fluoride is topical, the notion of an “adequate daily intake” is flawed. One of the key concerns about water fluoridation is the inability to control an individual's dose of ingested fluoride which brings into question the concept of the “optimal dose.” Since the 1980s numerous studies have identified that adults and children are exceeding these agreed limits, contributing to a rapid rise in dental fluorosis—the first sign of fluoride toxicity [35–37]. In 1991, the Centers for Disease Control (CDC) in the USA measured fluoride levels and found that where water is fluoridated between 0.7 and 1.2 ppm overall fluoride, total fluoride intake for adults was between 1.58 and 6.6 mg per day while for children it was between 0.9 and 3.6 mg per day and that there was at least a sixfold variation just from water consumption alone [38]. In their recent review of water fluoridation, the EU (European Union) Scientific Committee on Health and Environmental Risks highlight that young children are likely to exceed the upper tolerable limits for fluoride consumption in areas with water fluoridation greater than 0.8 ppm and using fluoride toothpaste, although the estimates of ingestion are probably underestimated as they are based on ingestion from food and beverages in nonfluoridated areas [30]. Warren et al. have highlighted the complexity of quantifying fluoride intake in areas where there is widespread water fluoridation and increased availability of fluoride-containing products. They argue that “… it is doubtful that parents or clinicians could adequately track children's fluoride intake and compare it with the recommended level, rendering the concept of an “optimal” or target intake relatively moot” [26, page 114]. Their conclusion supports earlier research that suggested that the term optimal fluoride intake should be dropped from common usage [39]. As Ismail and Hasson (2008) have argued “We believe that dentists should dismiss the misconception that there is a balance between dental caries and fluorosis, because patients can accrue the benefits of topical fluorides without developing fluorosis and without systemic intake” [40, page 1465].
The inability to control individual dose renders the notion of an “optimum concentration” obsolete. In the USA, a study in Iowa found that 90% of 3-month-olds consumed over their recommended upper limits, with some babies ingesting over 6 mg of fluoride daily, above what the Environmental Protection Agency and the WHO say is safe to avoid crippling skeletal fluorosis [41]. Most recently a study in the UK of fluoride levels found in tea concluded that “… fluoride concentrations can exceed the recommended DRI of 4 mg/day…, in certain tea commodities, under the minimal brewing time of 2 min…” [42, page 569]. This study used nonfluoridated water but supports earlier findings by Koblar et al. who report that the adequate intake of fluoride from a 70 kg adult consuming five cups of tea daily ranges from 25 to 210% depending upon tea brand and whether the water is fluoridated [43].
The main source of ingested fluoride to teeth is saliva, whose fluoride concentration is much lower than ingested fluoride. Furthermore, dental caries is essentially the outcome of bacterial infections modulated by physical, biological, environmental, behavioural, and lifestyle-related factors such as high numbers of cariogenic bacteria, inadequate salivary flow, high intake of fermentable carbohydrates, inadequate access to dental services, poor oral hygiene, inappropriate methods of feeding infants, malnutrition (especially calcium and magnesium deficiency), and poverty. Fluoride exposure has a complex relationship in relation to dental caries and may increase dental caries risk in malnourished children due to calcium depletion and enamel hypoplasia, while offering modest caries prevention in otherwise well-nourished children. It has been demonstrated that at low friction loads, enamel hydroxyapatite and fluoroapatite appear to wear in the same way. However, at high friction loads, fluoroapatite enamel flakes and wears catastrophically, leaving severely fractured enamel, whereas hydroxyapetite enamel does not as it is more adaptable to remodelling. This may be due to fluoride's disruption of cycles of demineralisation and mineralisation which take place throughout the lifecycle of teeth enamel [44–46]. The adverse impact of fluoride in producing brittle teeth has been recognised in laboratory animals since 1933, and fluoride-induced brittle teeth were demonstrated to be worse with industrial fluorides such as sodium fluoride compared with naturally occurring calcium fluoride [47].
Sauerheber has analysed the physiologic conditions (such as calcium and pH levels) and systemic effects of ingested fluoride as well as the efficacy of ingested artificially fluoridated water on dental caries prevention [48]. He highlights the important distinction that should be made between naturally occurring fluoride (calcium fluoride CaF2) found in water supplies and added fluoride compounds (sodium fluoride NaF and fluorosilicic acid H2SiF6). His analysis is based on a detailed review of the effect of fluorides on physiological functions and concludes that there are harmful effects from adding artificial fluoride compounds to water supplies. He observes that most analyses of fluoridation rarely focus on detailed physiological analysis but rely on observational epidemiological data to demonstrate effectiveness which are rarely sensitive enough or examine potential issues of harm. One key exception to this was the review by the National Research Council in the USA for the Environmental Protection Agency which took a weight of evidence approach to examining toxicological and physiological effects of fluoride on water [49]. This review identified a number of potential and established adverse effects including cognitive impairment, hypothyroidism, dental and skeletal fluorosis, enzyme and electrolyte derangement, and cancer [49].
In a meta-analysis of 27 mostly China-based studies on fluoride and neurotoxicity, researchers from Harvard School of Public Health and China Medical University in Shenyang found strong indications that fluoride may adversely affect cognitive development in children [50]. All but one study suggested that high fluoride content in water may negatively affect cognitive development. The average loss in intelligence quotient (IQ) was reported as a standardized weighted mean difference of 0.45, which would be approximately equivalent to seven IQ points for commonly used IQ scores with a standard deviation of 15 [50]. While fluoride's effect on IQ in this meta-analysis did not reach statistical significance, the combined effect at population level is remarkable. A particular concern of the NRC committee was the impact of ingested fluoride on the thyroid gland [49]. In a 2005 study, it was found that 47% of children living in a New Delhi neighbourhood with average water fluoride level of 4.37 ppm have evidence of clinical hypothyroidism attributable to fluoride. They found borderline low FT3 levels among all children exposed to fluoridated water [51]. The mechanisms through which fluoride exacerbates hypothyroidism include competitive binding with iodine, as well as synthesis obstruction of T3 and T4. These mechanisms explain the use of fluoride at doses above 5 mg/day in the treatment of hyperthyroidism [52, page 451]. Thus, fluoride-induced hypothyroidism is likely to be more common in iodine-deficient settings. Australian surveys indicate that the general Australian population is mildly deficient in iodine [53] Iodine-deficient children ingesting fluoridated water have been found to demonstrate intellectual deficits even at water fluoride levels of 0.9 ppm [54].
The most obvious and widespread impact of fluoride is dental fluorosis. In some cases—where fluoride levels are very high or where there is prolonged ingestion at 2 ppm or higher, cases of skeletal fluorosis have been reported. Skeletal fluorosis is a chronic metabolic bone disease caused by ingestion or inhalation of large amounts of fluoride. In regions with water fluoride concentrations over 2 ppm, or among workers constantly exposed to fluoride in aluminium or fertilizer industries, skeletal fluorosis is common (>20% prevalence) and manifested as joint pain in both upper and lower limbs, numbing and tingling of the extremities, back pains, and knock-knees. Vertebral osteosclerosis may result in spinal cord compression [55]. In addition, an increase in bone mass due to fluoride ingestion or treatment (for osteoporosis) does not translate into improved bone strength, and high doses of sodium fluoride for osteoporosis treatment may increase the risk of vertebral fractures [56]. Dental fluorosis mirrors skeletal fluorosis. Similar to counterintuitive histological changes in bone, the macroscopic appearance of increasing degrees of dental fluorosis was directly correlated to the degree of subsurface porosity [57]. Despite such histological changes suggesting that tooth decay prevalence may be higher among children with fluorosis, research findings have been mixed [58, 59]. There is no safe limit for fluoride ingestion in relation to dental fluorosis, but fluoridated levels exceeding 0.3 ppm have been associated with teeth mottling and discolouration [30]. Since the initially proposed optimum fluoride intake of 1 mg/day (from one litre of 1 ppm fluoridated water), new sources of fluoride have been introduced through dental care products, processed foods, and commercial beverages. These sources have increased average cumulative fluoride intake to more than 2 mg/day. With these higher levels of fluoride intake, dental fluorosis and other toxic effects noted above have also increased.
Currently, about 41% of children in the United States, where water has been fluoridated at an average level of 1 ppm, have varying degrees of dental fluorosis—levels of over 50% in some fluoridated areas [60]. The National Research Council's report on the health effects of ingested fluoride in the United States, found that “… the prevalence of dental fluorosis in optimally fluoridated areas (both natural and added) in recent years ranged from 8% to 51%, compared with 3% to 26% in non-fluoridated areas.” [49, page 37] This implies that while nonwater sources of fluoride are likely to be consumed at the same level in fluoridated and nonfluoridated areas, and while the use of dental supplements is higher in nonfluoridated areas, fluorosis is significantly higher in areas where water is fluoridated. While the only uncontroversial clinical complication of (severe) dental fluorosis is adverse psychological impact on well-being, self-esteem, and negative community perception of affected individuals' oral health [61], established clinical complications of skeletal fluorosis include arthritis, radiculomyelopathy, quadriparesis, and pathological bone fractures [62, 63].
Fluoride is a known enzyme disruptor. For example, fluoride's anticaries effect is derived in part from its ability to derange the enzymes of cariogenic bacteria [20, 21]. Fluoride can interfere by attaching itself to metal ions located at an enzyme's active site or by forming competing hydrogen bonds at the active site which is not exclusively just on the teeth [64]. There are 66 enzymes which are affected by fluoride ingestion, including P450 oxidases, as well the enzyme which facilitates the formation of flexible enamel [65]. A recent study of the effects of inorganic fluoride compounds on human cellular functions revealed that fluoride can interact with a wide range of enzyme-mediated cellular processes and genes modulated by fluoride including those related to the stress response, metabolic enzymes, the cell cycle, cell-cell communications, and signal transduction [66]. Due to high negativity of fluoride, it interacts actively with positively charged ions such as calcium and magnesium. In industrial settings, hydrofluoric acid poisoning is usually treated with intravenous calcium gluconate as such poisoning is associated with acute hypocalcaemia [67]. As with calcium, magnesium plays important roles in optimal bone and teeth formation. By competing with magnesium and calcium in teeth and bones, fluoride deranges the delicate bone formation and bone resorption processes. Such derangements, and consequent intensity of fluoride's adverse effects on bone and teeth, are amplified in malnutrition, calcium deficiency, and magnesium deficiency [68, 69]. Chronic fluoride ingestion is commonly associated with hyperkalaemia and consequent ventricular fibrillation [70].
There have also been a number of studies that link fluoride and cancer. More than 50 population-based studies which have examined the potential link between water fluoride levels and cancer have been reported in the medical literature. Most of these studies have not found a strong link between chronic fluoride ingestion and cancer. In a major review of the topic published in 1987, the International Agency for Research on Cancer labelled fluorides as “… non-classifiable as to their ability to cause cancer in humans” and that the studies reviewed “… have shown no consistent tendency for people living in areas with high concentrations of fluoride in the water to have higher cancer rates than those living in areas with low concentrations” [71]. However, they concluded that the evidence was inadequate to draw conclusions one way or another and that the evidence linking fluorides with cancer was deemed “inadequate” [71]. The York, NRC and SCHER reviews came to similar conclusions [28, 30, 49] However, population-based-studies strongly suggest that chronic fluoride ingestion is a possible cause of uterine cancer and bladder cancer; there may be a link with osteosarcoma—highlighted as an area where there is evidence of problems requiring further research [30, 72–74].
For further reading, please click here: www.ncbi.nlm.nih.gov/pmc/articles/PMC3956646/
Further points:
Fluoride has modest benefit in terms of reduction of dental caries but significant costs in relation to cognitive impairment, hypothyroidism, dental and skeletal fluorosis, enzyme and electrolyte derangement, and uterine cancer. Given that most of the toxic effects of fluoride are due to ingestion, whereas its predominant beneficial effect is obtained via topical application, ingestion or inhalation of fluoride predominantly in any form constitutes an unacceptable risk with virtually no proven benefit.
Of all sources of fluoride, artificially fluoridated water is the most practical source to eliminate in order to reduce its human hazards at population levels. Indeed, the abundance of fluoride sources ingested by humans, from tea to cereals and condiments [42, 49, 72, 73], suggest that the prime public health priority in relation to fluoride is how to reduce ingestion from multiple sources, rather than adding this abundant and toxic chemical to water or food.
Although artificial fluoridation of water supplies has been a controversial public health strategy since its introduction, researchers—whom include internationally respected scientists and academics—have consistently found it difficult to publish critical articles of community water fluoridation in scholarly dental and public health journals. Thus, any review of the public health and dental health literature would lead to a bias in favour of water fluoridation. Indeed, the dental public health academic community has sought to brandish opponents to water fluoridation as mad or unscientific [86, 87]. In 2013, residents in Portland, OR, USA, voted for the fourth time to reject the fluoridation of their water supplies. The response by public health authorities was interesting as opponents of water fluoridation were characterised as unscientific and ignoring the needs of children from deprived areas. Almost all articles from peer-reviewed dental journals have been authored by those who support and promote water fluoridation—a situation which continues to the present day—with little critical commentary. Yet there are many papers that raise concerns about the effects of ingested fluoride within the wider scientific literature although there remain few human studies on detrimental health effects and there have been consistent calls for more research in this area [28, 30, 49].
Some affordable removal systems:
purewaterfreedom.com/filter-fluoride
A change in the ideological approach to fluoride use for dental caries prevention is essential in the global public health community. An important change would be for the World Health Organization to repudiate its assertion that fluoride is an essential nutrient or trace element, or that artificial water fluoridation is a useful public health strategy. Resolution 4 of the 2007 World Health Assembly resolution 60.17 urges member states to “consider the development and implementation of fluoridation programmes” [90]. This statement is a reflection of current realities that artificial water fluoridation is not necessarily the most economical, effective, or affordable way to deliver fluoride to teeth in the 21st century [8, 9].
Additional links:
Reddit Discussion: www.reddit.com/r/conspiracy/comments/9uej2f/stop_drinking_fluoride/
www.ncbi.nlm.nih.gov/pmc/articles/PMC3956646/
www.lakestay.co.uk/fluoridefreecumbria/factfile.html
awakeningforums.com/thread/25/sodium-fluoride-added-water-toxic
awakeningforums.com/thread/120/decalcify-activate-pineal-gland
www.naturalnews.com/2017-08-03-fluoride-toxin.html